Simultaneous Localization and Mapping Using Rao-Blackwellized Particle Filters in Multi Robot Systems

نویسندگان

  • Luca Carlone
  • Miguel Efrain Kaouk Ng
  • Jingjing Du
  • Basilio Bona
  • Marina Indri
چکیده

In this paper we investigate the problem of Simultaneous Localization and Mapping (SLAM) for a multi robot system. Relaxing some assumptions that characterize related work we propose an application of Rao-Blackwellized Particle Filters (RBPF) for the purpose of cooperatively estimating SLAM posterior. We consider a realistic setup in which the robots start from unknown initial poses (relative locations are unknown too), and travel in the environment in order to build a shared representation of the latter. The robots are required to exchange a small amount of information only when a rendezvous event occurs and to measure relative poses during the meeting. As a consequence the approach also applies when using an unreliable wireless channel or short range communication technologies (bluetooth, RFId, etc.). Moreover it allows to take into account the uncertainty in relative pose measurements. The proposed technique, which constitutes a distributed L. Carlone (B) · M. Kaouk Ng CSPP, Laboratorio di Meccatronica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy e-mail: [email protected] M. Kaouk Ng e-mail: [email protected] J. Du · B. Bona · M. Indri Dipartimento di Automatica e Informatica, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy J. Du e-mail: [email protected] B. Bona e-mail: [email protected] M. Indri e-mail: [email protected] 284 J Intell Robot Syst (2011) 63:283–307 solution to the multi robot SLAM problem, is further validated through simulations and experimental tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast and accurate SLAM with Rao-Blackwellized particle filters

Rao-Blackwellized particle filters have become a popular tool to solve the simultaneous localization and mapping problem. This technique applies a particle filter in which each particle carries an individual map of the environment. Accordingly, a key issue is to reduce the number of particles and/or to make use of compact map representations. This paper presents an approximative but highly effi...

متن کامل

Look-ahead Proposals for Robust Grid-based SLAM with Rao-Blackwellized Particle Filters

Simultaneous Localization and Mapping (SLAM) is one of the classical problems in mobile robotics. The task is to build a map of the environment using on-board sensors while at the same time localizing the robot relative to this map. Rao-Blackwellized particle filters have emerged as a powerful technique for solving the SLAM problem in a wide variety of environments. It is a well-known fact for ...

متن کامل

Novel Rao-Blackwellized Particle Filter for Mobile Robot SLAM Using Monocular Vision

This paper presents the novel Rao-Blackwellised particle filter (RBPF) for mobile robot simultaneous localization and mapping (SLAM) using monocular vision. The particle filter is combined with unscented Kalman filter (UKF) to extending the path posterior by sampling new poses that integrate the current observation which drastically reduces the uncertainty about the robot pose. The landmark pos...

متن کامل

Multi-robot Simultaneous Localization and Mapping using Particle Filters

This paper describes an on-line algorithm for multirobot simultaneous localization and mapping (SLAM). We take as our starting point the single-robot Rao-Blackwellized particle filter described in [1] and make two key generalizations. First, we extend the particle filter to handle multi-robot SLAM problems in which the initial pose of the robots is known (such as occurs when all robots start fr...

متن کامل

Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots

In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of Intelligent and Robotic Systems

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2011